

IMP Series 運動控制函式庫 整合測試環境使用手冊

版本: V.3.00

日期:2019.09

http://www.epcio.com.tw

目 錄

1.	運動控制函式庫測試軟體簡介	2
2.	啟動測試軟體	4
3.	運動屬性設定	6
4.	原點復歸運動屬性設定	10
5.	執行運動命令	.11
6.	JOG 運動	13
7.	原點復歸運動	14
8.	運動狀態與訊息顯示	15
9.	Asynchronous Remote I/O 測試	18

1. 運動控制函式庫測試軟體簡介

運動控制函式庫測試軟體可用於測試單張 IMP Series 運動控制平台,並使用單一 Group (有關 Group 的說明請參考"IMP Series 運動控制函式庫使用手冊"), Group 參數設定如下:

m_nGroupIndex = MCC_CreateGroup(

- 0, // X 軸規劃結果由 Channel 0 輸出
- 1, // Y 軸規劃結果由 Channel 1 輸出
- 2, // Z 軸規劃結果由 Channel 2 輸出
- 3, //U 軸規劃結果由 Channel 3 輸出
- 4, // V 軸規劃結果由 Channel 4 輸出
- 5, // W 軸規劃結果由 Channel 5 輸出
- 6, // A 軸規劃結果由 Channel 6 輸出
- 7, // B 軸規劃結果由 Channel 7 輸出
- 0); // 此 Group 對應之運動控制平台編號

因此程式中所使用的函式如需輸入 Group 編號,則一律給定 m_nGroupIndex。

測試軟體僅使用到 MCCL 所提供的基本功能函式,其他函式的用法請參考"IMP Seires 運動控制函式庫參考手冊"的說明,而如果對於函式的用法仍有疑義請參考"IMP Seires 運動控制函式庫範例手冊"的說明。下面將配合圖示說明使用到的基本功能函式,並簡單說明測試軟體的操作方法。

進入運動控制函式庫測試軟體(MCCLTest4IMP)的操作方式:

運動控制函式庫測試軟體(MCCLTest4IMP)主畫面:

2. 啟動測試軟體

欲測試 MCCL 的功能需先啟動 MCCL,設定參數步驟如下:

1. 按下主畫面中 Parameters ... 按鍵 , 可設定 "System" (如下圖)的 Interpolation Time(插值時間),建議值為 2ms。

Parameter Setting		×
System Mechanism	Motion Go Home	
Card1 Type :	8 Axis Motion Card (IMP-3)	
Interpolation Time :	☑ ms	

2. 檢查機構參數的設定是否正確,可使用"Mechanism(機構參數設定)"(如下圖)的各項設定。各項參數的意義請參考"IMP Seires 運動控制函式庫使用手册 2.4.1 機構參數"的說明。

Parameter Setting	×
System Mechanism Motion Go Home	
Axis : X Axis ✓ Max. Speed : 3000 mm/sec I Colck Divider 10000 D/FF Colck Divider 10000	
Pos. Direction : Direct to Encoder Command Mode Pulse Command	
RPM : 3000 Rev/Min PPR : 10000 Pulse/Rev	
Gear Ratio : 1 Pitch : 1 UU/Rev	
Software Limitation Protection High Limit: 10000 UU Low Limit: -10000 UU	
Over Travel Up : Not Check Over Travel Down : Not Check	
Driver Pulse Mode : CW/CCW ▼ Pulse Width : 100 x 0.025 us P Gain : 40 I Gain : 0 D Gain : 0 FF Gain : 0	
Type : A/B	
A Phase : No ▼ B Phase : No ▼ C Phase : No ▼	
* UU: User Unit	
確定 取消 套用(A) 説明	

3. 按下主畫面中 Start System 按鍵,此動作除了將設定系統參數外,並將 呼叫 MCC_InitSystem()。

3. 運動屬性設定

說明在變動"Motion(運動屬性設定)"(如下圖)的設定時,測試軟體需使用的MCCL函式,使用者可依照運動軌跡的變動,瞭解MCCL的使用方式。

Parameter Setting X
System Mechanism Motion Go Home
Acceleration Curve : Trapezoid ▼ Deceleration Curve : Trapezoid ▼
Acceleration Time : 300 ms Deceleration Time : 300 ms
Path Blending : Disable ▼
_In Position—
In Position : Disable • Mode IPM_ONETIME_BLOCK •
Max. Check Time : 100 ms Settle Time : 100 ms
Tolerance : 0.1
_ Tracking Error
Enable: $\square X \square Y \square Z \square U \square V \square W \square A \square B$
Error Limit : 10 10 10 10 10 10
Software Over Travel Check
X Axis Y Axis Z Axis U Axis V Axis W Axis A Axis B Axis
Hardware Limit Switch Check
☐ Check Limit Switch Limit Mode: No Error Bi-Direction ▼
* UU: User Unit
確定 取消 套用(A) 説明

下面將說明各選項對應的函式呼叫:

Acceleration Curve Acceleration Curve : Trapezoid

設定在進行直線、圓弧、圓、螺線運動時 X, Y, Z, U, V, W, A, B 軸的加速型式,可設定梯形曲線與 S 形曲線。

當選擇 Trapezoid 時,將呼叫 MCC_SetAccType('T'),表示使用梯形加速曲線; 當選擇 S 時,則呼叫 MCC_SetAccType('S'),表示使用 S 形加速曲線。

Deceleration Curve Deceleration Curve : Trapezoid

設定在進行直線、圓弧、圓、螺線運動時 X, Y, Z, U, V, W, A, B 軸的減速型式,可設定梯形曲線與 S 形曲線。

當選擇 Trapezoid 時,將呼叫 MCC_SetDecType('T'),表示使用梯形減速曲線; 當選擇 S 時,則呼叫 MCC_SetAccType('S'),表示使用 S 形減速曲線。

Acceleration Time : 300 ms

設定加速時間,單位為 ms。設定的加速時間必須大於 0。假設要求加速時間為 dfAccTime,則可呼叫 MCC_SetAccTime (dfAccTime)。

Deceleration Time Deceleration Time : 300 ms

設定減速時間,單位為 ms。設定的減速時間必須大於 0。假設要求減速時間為 dfDecTime,則可呼叫 MCC_SetDecTime (dfDecTime)。

Path Blending Path Blending : Disable

選擇是否開啟平滑運動功能。當選擇"Disable"時將關閉平滑運動功能,此時呼叫 MCC_DisableBlend();當選擇"Enable"時將開啟平滑運動功能,此時呼叫 MCC_EnableBlend()。

In Position

In Position				
In Position :	Disable	-	Mode : IPM_ONETIME	_BLOCI ▼
,		_		_
Max. Check Time :	100	ms	Settle Time : 100	ms
_				
Tolerance :	0.1	UU		

選擇是否開啟定位確認功能及設定其參數(有關定位確認功能請參考"IMP Seires 運動控制函式庫使用手册 2.7.2 定位確認")。

In Position : Disable	MCC_EnableInPos() / MCC_DisableInPos()
Mode : IPM_ONETIME_BLOCI ▼	MCC_SetInPosMode()
Max. Check Time : 100 ms	MCC_SetInPosMaxCheckTime()
Settle Time : 100 ms	MCC_SetInPosSettleTime()
Tolerance : 0.1 UU	MCC_SetInPosToleranceEx()

Tracking Error

選擇是否開啟跟隨誤差功能及設定其參數(有關跟隨誤差功能請參考" IMP Seires 運動控制函式庫使用手册 2.7.3 跟隨誤差偵測")。

開啟/關閉跟隨誤差功能:MCC_EnableTrackError()/MCC_DisableTrackError() 設定跟隨誤差容許範圍:MCC_SetTrackErrorLimit()

Software Over Travel Check

使用 MCC_SetOverTravelCheck()設定是否開啟各軸的軟體過行程檢查功能, 此項功能可使移動位置限制在工作區間內。

Hardware Limit Switch Check

狀態若為 Check Limit Switch 則將呼叫 MCC_EnableLimitSwitchCheck()開啟極限開關檢查功能,否則將會呼叫 MCC_DisableLimitSwitchCheck()關閉極限開關檢查功能。使用者也能呼叫 MCC_GetLimitSwitchStatus()檢查目前是否已碰觸到極限開關。使用這些函式必須正確設定機構參數中的wOverTravelUpSensorMode與wOverTravelDownSensorMode(必須為Normal Open 或Normal Close)。

Limit Mode: No Error Bi-Direction ▼ 可選擇碰觸到硬體極限開關之模式,可 參考 MCC_EnableLimitSwitchCheck()之詳細說明。

No Error Bi-Direction模式:只要碰觸到極限開關,皆會停止輸出該軸之運動命令。

No Error Single Direction 模式:只有在碰觸到該軸運動方向的極限開關時, 才會停止輸出該軸之運動命令。

Error Msg Bi-Direction 模式:只要碰觸到極限開關,皆會停止輸出該軸之運動命令;並且會產生錯誤記錄。

Error Msg Single Direction模式:只有在碰觸到該軸運動方向的極限開關時, 才會停止輸出該軸之運動命令;並且會產生錯誤記錄。

4. 原點復歸運動屬性設定

上圖顯示 "Go Home(原點復歸運動屬性設定)",這些設定值將直接反映在原點復歸參數,詳細的內容請參閱"IMP Seires 運動控制函式庫使用手冊之 2.8 原點復歸"。

5. 執行運動命令

下圖為"Motion Command(運動命令參數設定)"區,下面將分別說明一般運動操作相關內容:

Motion Command		
Command : MCC_Line ▼ Speed	10 UU/sec	Ratio: 50 %
Target position —		
X: 12 Y: 10 Z: 8 U:	6 V: 4	W: 2
Center point	A: 1	B: 0.5
X: 5 Y: 5 Z: 5	Run	Hold
Dir: @ CW C CCW Pitch: 0	Stop	Continue

運動命令選項: Command: MCC_Line ▼

由此選項可挑選運動命令的類型,選項內容與函式名稱相同,包括點對點、直線、圓、圓弧與螺線運動。

速度設定:

Speed: 10 UU/sec 用來設定進給速度,單位為 UU/sec,此項輸入值將作為 MCC_SetFeedSpeed()的呼叫參數,其值不得小於或等於 0。

Ratio: 50 %設定點對點的速度比例,此項輸入值的範圍為 1~100,將作為 MCC_SetPtPSpeed()的呼叫參數。

參數內容:

上圖中的 Target position 與 Center point 是呼叫" Command(運動命令選項)" 所列出函式時所需要傳入的參數,詳細內容請參考"IMP Series 運動控制函式庫參考手冊"。

當各項參數設定無誤後,可按下	Run	按鍵將運動命令送至
運動命令緩衝區。按下 Hold j	按鍵可呼叫 MC	C_HoldMotion()暫停
運動;按下 Continue 按鍵可呼叩	씨 MCC_ContiM	otion()繼續執行被暫
停的運動命令;按下 Stop	安鍵可呼叫 MCC	C_AbortMotionEx()停
· 月前運動並清除運動命令緩衝區中之	庫存命今 。	

6. JOG 運動

下圖為"JOG 運動參數設定"區,下面將說明與 JOG 運動相關選項的內容:

Unit: UU	▼ Sp	eed: 50 %	(1~100%)	Offset: 1	
<< X	>>	<< U	>>	<< A	>>
<< Y	>>	<< V	>>	<< B	>>
<< Z	>>	<< W	>>		

位移量的單位: Unit: UU ▼

位移量的單位如果選擇"UU(User Unit)"選項,則 JOG 運動將使用 User Unit 作為位移量單位,並在使用 JOG 運動控制鍵時(例如按下 >>),依照指定之增量位移值 (Offset: 1)及進給速度比例(Speed: 50 %)帶動指定軸,此時將呼叫 MCC_JogSpace()。

位移量的單位如果選擇"Pulse"選項,則 JOG 運動將使用 pulse 作為位移量單位,此時系統如果處於運動停止狀態,且使用 JOG 運動控制鍵,將依照指定之脈衝位移量與方向帶動指定軸。脈衝之位移量設定不宜過大(不能超過 2048 pulses),此時將呼叫 MCC_JogPulse()。

詳細函式使用請參考"IMP Seires 運動控制函式庫使用手册 2.6.2 基本軌跡 規劃"的說明。

7. 原點復歸運動

下圖為"Home(原點復歸)"區,下面將說明與原點復歸運動操作相關選項的內容:

Order —	Y: 0	Z:0	U : 0	v : 0	w: 0	A: 0	B: 0
Enable	▼Y □Z	_ U _ '	/ 🗆 W I	□А□В	Sto	р	Run

與原點復歸運動有關的函式宣告如下:

MCC_Home(int nOrder0, int nOrder1, int nOrder2, int nOrder3, int nOrder4, int nOrder5, int nOrder6, int nOrder7, WORD wCardIndex);

MCC_GetGoHomeStatus();

其中 MCC_{Home} ()可使機器完成原點復歸動作,使用此函數時,可配合呼叫函數 $MCC_{GetGoHome}$ Status(),以檢查原點復歸是否完成。 $nOrder0\sim nOrder7$ 分別表示 X, Y, Z, U, V, W, A, B 各軸執行原點復歸動作的順序,各軸執行原點復歸動作的順序可設定為 $0\sim7$,設定值可重複。這些參數可由"Home(原點復歸)" 區獲得。

當各項參數設定無誤後,按下 按鍵將呼叫 MCC_Home()執行原點復歸運動。在執行原點復歸運動時,按下 Stop 按鍵將呼叫 MCC_AbortGoHome()停止原點復歸運動。

8. 運動狀態與訊息顯示

下圖為"運動狀態訊息顯示"區,下面將分別說明各項資訊的獲得方式:

Current Posi	tion —	pulse—© UU——
X:0	U:0	A:0
Y:0	V : 0	B:0
Z:0	W:0	
Encoder Cou	nter (puls	e unit)
X:0	U:0	A:0
Y:0	V : 0	B:0
Z:0	W:0	
Current Velo	city (UU /	sec)
Feed Speed	: 000	
X:0	U:0	A:0
Y:0	V : 0	B:0
Z:0	W:0	
Max. Speed		HW. Pulse Stock
3000.000		0
Command In	dex:0	
Motion Statu	s : Unkno	wn
Error Code :	0X0	
In-Position C	heck	

Coordinate Mode: C Absolute • Relative

設定以絕對座標型態或以增量型態表示各軸座標位置。當選擇"Absolute"時, 將 呼 叫 MCC_SetAbsolute(); 當 選 擇 "Relative"時 , 將 呼 叫 MCC_SetIncrease()。

Current Po	osition—C p	ulse—© UU——
X:0	U : 0	A:0
Y:0	V : 0	B:0
Z:0	W:0	

各軸目前位置命令之直角座標值:

可使用 MCC_GetCurPos()讀取各軸目前位置之直角座標值。

Encoder C	ounter (pulse unit)	
X:0	U : 0	A:0
Y:0	V : 0	B:0
Z:0	W:0	

各軸目前位置的編碼器計數值:

如果系統有安裝編碼器可使用 MCC_GetENCValue()讀取各軸目前位置的編碼器計數值。

Current Velocity (UU / sec)		
Feed Spe	ed : 000	
X:0	U : 0	A:0
Y:0	V : 0	B:0
Z:0	W:0	

目前實際進給速度與各軸速度:

呼叫 MCC_GetCurFeedSpeed()與 MCC_GetSpeed()可獲得一般運動(不包括點對點運動)目前的進給速度與各軸速度。

訊息視窗

Initialization is successful!
Sending Line Command, Command Index: 1
General Motion Finished!

"訊息視窗"的內容顯示目前的運動狀態;此外,也顯示在按下"Motion Command(運動命令參數設定)"區中的 Fun 按鍵時,被送至運動命令緩衝區的運動命令之編碼,編碼可由函式的傳回值獲得(例如呼叫 MCC_Line()的函式傳回值)。目前正在執行的運動命令之相關資訊可以利用 MCC_GetCurCommand()獲得,這些資訊包括運動命令編碼。執行中的運動命令編碼顯示如下:

Max. Speed	HW. Pulse Stock
3000.000	30
Command Index :	3
Motion Status : Ur	nknown
Error Code: 0X0	
In-Position Check	

"Home Sensor & Limit Switch Sensor & GPIO(LED) & Emergency Stop 狀態"顯示區,用來顯示這些輸入點的狀態。

可以使用 MCC_GetLimitSwitchStatus()、 MCC_GetGoHomeStatus()、 MCC_LIO_GetLedLightStatus() 與 MCC_GetEmgcStopStatus() 讀取 Home Sensor、Limit Switch Sensor、GPIO(LED)與 Emergency Stop 的狀態。

9. ASYNCHRONOUS REMOTE I/O 測試

如系統有安裝 Asynchronous Remote I/O 控制子版(ARIO),在初始化系統成功即可按下 Remote I/O 按鍵獲得 ARIO 控制視窗。注意系統在使用 MCC_InitSystem 成功初始化系統後,尚需呼叫下列函式才能正常使用 ARIO 的功能,這些函式包括:

MCC_EnableARIOSetControl();

MCC_EnableARIOSlaveControl();

下圖為 ARIO 控制視窗

分別使用 MCC_GetARIOInputValue()與 MCC_SetARIOOutputValue()讀取與 設定 ARIO 的訊號狀態。